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MEAN FLOWS INDUCED BY INTERNAL GRAVITY
WAVE PACKETS PROPAGATING IN A SHEAR FLOW
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2l
4 An inviscid, incompressible, stably stratified fluid occupies a horizontal channel,
along which an internal gravity wave packet is propagating in the presence of a
basic shear flow. By using a generalized Lagrangian mean formulation, the equation
for wave action conservation is derived to describe the manner in which the basic
flow affects the waves. Equations describing the second-order (in amplitude) wave-
induced Lagrangian mean flows are obtained. Two kinds of applications are dis-
cussed: (i) steady mean flows, due to waves encountering an inhomogeneity in their
environment, such as a varying channel depth; (ii) mean flows induced by modu-
lations in the wave amplitude.
1. INTRODUCTION
. Internal gravity waves are an important feature of the atmosphere and ocean. Although the
0 linearized theory of these waves is now well understood and capable of describing many
observational aspects, some of the most important consequences of internal gravity wave
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392 R. GRIMSHAW

activity are due to nonlinear effects. In this paper we shall describe the manner in which a
wave packet is affected by changes in its environment, and we shall calculate the mean flows
induced by wave packets. The further question of how such induced mean flows affect the
waves will be deferred to a later paper.

We shall consider internal gravity waves in an inviscid, incompressible and stably stratified
fluid, bounded below by a rigid boundary, and above by a free surface. Our concern is thus
with the oceanic environment in the first instance, although the cases when the upper surface
is rigid. or removed to infinity, can easily be obtained from our analysis. The waves will be
propagacing relative to a basic state characterized by a density gradient and a horizontal shear
flow. When the basic state is one of rest, the mean motions induced by modulated internal
gravity waves in a channel have been discussed by Grimshaw (1977), Thorpe (1977) and
Leonov et al. (1979), while some special cases have been considered by McIntyre (1973) and
Chimonas (1978). One of our principal concerns is to evaluate the effect of a basic horizontal
shear flow on these induced mean motions. Recently Thorpe (1978) has considered nonlinear
effects for internal gravity waves in a shear flow, but he did not calculate the mean motions
induced by modulated waves.

In §2 we introduce the equation of motion, and define the separation of scales and the
averaging procedure which enables us to distinguish between the mean flow and the waves.
The calculations are considerably simplified and clarified by using the generalized Lagrangian
mean formulation recently proposed by Andrews & Mclntyre (19784). Although their for-
mulation is exact we shall use it in an approximate sense, defined both by the smallness of
the wave amplitude and by the separation of length scales between the mean flow and the
waves.

It is well known that the effect of the environment on the waves is described by the equation
for the conservation of wave action (Bretherton & Garrett 1969). The derivation of this
equation for the present problem has been given by Hector ¢t al. (1972). However, the use of the
generalized Lagrangian mean formulation considerably simplifies the calculations (cf. Andrews
& Mclntyre, 19785), which are described in §3.

The equations describing the induced mean flow are presented in §4. Instead of using
the conventional method of finding an appropriate radiation stress tensor, we use the approach
of Andrews & Mclntyre (19784) which calculates instead a quantity they have called the
pseudomomentum, and obtains directly the equations for the Lagrangian mean flow in a
fairly simple form. The corresponding Eulerian mean quantities can then be obtained by
calculating the Stokes corrections.

Then in §§5 and 6 we describe some applications of our general theory. In §5 we consider
the steady mean flows which arise when the basic flow is inhomogeneous in a single horizontal
direction. Our principal application is to the propagation of internal gravity waves over varying
bottom topography; it will be shown that whereas the Lagrangian mean velocities are zero
in the absence of a basic shear flow, they do not vanish if any basic flow is present. Then in
§6 we consider mean flows induced by modulated waves in the absence of any other inhomo-
geneities. Our principal conclusion here is that whenever the group velocity of the waves
equals, or nearly equals, the basic shear flow, then there will be significantly large mean flows
with a fine microstructure.
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MEAN FLOWS INDUCED BY INTERNAL WAVES 393

2. GENERALIZED LAGRANGIAN MEAN FORMULATION

The Eulerian equations of motion for an inviscid, incompressible stably stratified fluid are

Ou;
A

du, 1 0p p
Pateacty
d _0 e 0
de — ot Tt ow}
Here u; are the velocity components, p is the density, p is the pressure, ¢ is the time, and x; are
Eulerian Cartesian coordinates; the roman subscript ¢ takes the values 1, 2 or 3, and the
summation convention is used; d;; is the Kroneker delta and the x3-axis is the vertical axis.
The variables are non-dimensional, based on a length scale L (a typical wavelength), and a
time scale N7* where &, is a typical value of the Brunt-Viisila frequency; the velocity scale
is ML, and the pressure scale p, gL, where p, is a typical value of the density. Then the par-

ameter £ is N3Lg~1, and is small in the Boussinesq approximation. It is convenient in the sub-

dp
*a—t = O, (2.1(1, b)

61:3 = 0, (2.16)

where (2.1d)

sequent analysis to distinguish between horizontal coordinates x,(«¢ = 1, 2) and the vertical
coordinate z’ = x3 by employing greek indices for horizontal variables, while retaining roman
indices for all three coordinates; similarly, u, are the horizontal velocity components and
w = uy is the vertical velocity. It will be assumed that the fluid occupies a horizontal channel,
bounded below by a rigid boundary z’ = —A(x), and above by the free surface z' = {(xy, t).
The boundary conditions are

OF

w+u,0h/0xy, =0 on z' = —h(x), (2.2q)

og 0¢ _ ' gt

5—£+ua—5z—w =0 on 2z = {(x1), (2.20)
p=0 on 2 = {0 (2.20)

To describe modulated waves we introduce a small parameter ¢, and define the long hori-
zontal variables and long time variable by

W X, = exg, T =t (2.3)
< :]3 Then if ¢ is any field variable (i.e. %, p, p, §), put |
—
< P(xiy 1) = (X5, T 2) +¢'(Xe, T 2°: 0'), (2.4q)
é =~ where 0 =e10X,, T), (2.40)

R

S: 5 and ¢’ is periodic in 6’ with period 2n and zero mean. Also % is now assumed to be A(X,).
T O ¢, the Eulerian mean, is an O(1) quantity and varies on length and time scales of O(¢™?),
= w while ¢’, the Eulerian perturbation, is an O(a) quantity and is wavelike; here ¢ is a small

parameter which measures the wave amplitude. Both ¢ and ¢’ possess some modal structure
in the vertical direction, and (2.4) describes a modulated wave on a background mean flow
propagating in a horizontal waveguide. Note that

Bty t) = (Bl 1) = 5 [ 90, (2.5)

38-2

OF
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394 R. GRIMSHAW

defines an averaging operator, which represents a local average over the phase of the waves.
It is conceptually useful to envisage 6’ being replaced by 6’ + i, and with the averaging operator
defined with respect to the ensemble label ¢, rather than the physical variable 6’ (cf. Hayes (1970)
or Andrews & Mclntyre (19785)). The general procedure now consists in substituting ex-
pressions such as (2.44) into (2.1) and (2.2), and linearizing about the mean, to obtain equations
governing the behaviour of the waves; the equations for the mean flow are obtained by applying
the averaging operator to (2.1) and (2.2). This is essentially the method used by Hector et al.
(1972), who derived the equation for conservation of wave action for internal gravity waves
on a shear flow, and also the method used by Grimshaw (1977) who calculated the mean flows
generated by internal gravity waves in the absence of a shear flow.

However, it transpires that the calculations are considerably simpler, both practically and
conceptually, if we use the generalized Lagrangian mean flow (g.L.m.) formulation recently
proposed by Andrews & MclIntyre (19784, b). Their theory is developed for a compressible
fluid, and for a general class of averaging operators, although without detailed application to
modal waves, but being an exact theory is readily adapted for use in the present context. We
shall give a brief outline here, and refer the reader to Andrews & Mclntyre (19784, &) for
further details, and for a discussion of the relation of the g.L.m. formulation to earlier theories.
Let x; be generalized Lagrangian coordinates and let £(x;, ¢) be the particle displacements
defined so that

X = X%+ & (2.6)
We then define a Lagrangian mean operator by
PU(xi5 1) = (P2 + &, 1)) (2.7)

In physical terms, ¢, the Eulerian mean, is the average over the phase of the waves taken at
a fixed place, while @¢¥, the Lagrangian mean, is the average over the phase of the waves
following the fluid motion. As shown by Andrews & MclIntyre (19784), this latter notion is
made precise by requiring that

<‘£1,> =0, (2'8)

whence it follows that x; is a coordinate which moves with the Lagrangian mean velocity @
whenever the coordinate x; moves with the true velocity »;. Since §; is wavelike and O(a), it
follows from (2.44, ) and (2.6) that we may put

x@’ t aL X ad T; Z) +$(X¢’ T; Z’ 0)’ (2'9a)
where 0 = e10(X,, T), (2.95)

and @ is periodic in 6 with period 2n and zero mean. Note that 6 is not identically equal to 6’
(they differ by an O(a) quantity), but @ is unchanged, and so the averaging operator {...)
(2.5) may be regarded as averaging over the phase 6. Further by comparing (2.44) with
(2.94), and expanding (2.44) in §;, it is readily shown that

¢ = ¢'+£,0¢/0x;+ 0(a?), (2.104)
U = g+¢5 (2.105)
where 3 = <g, g¢> < AL ax ax +0(ab). (2.100)
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&% is usually called the ‘Stokes correction’. Finally, we note that the great usefulness of the
g.L.m. formulation follows from the relation

E‘c.g - %.Fg{a%%, (2.11a)
and so <%—¢;— = %(gﬁ) (2.115)

We shall not prove this result here, but refer the reader to Andrews & MclIntyre (1978a).

However, the result should be no surprise as d/d¢ is the derivative following the fluid motion,

and #; has been defined by (2.8) to be the coordinate which moves with the velocity #}.
The next step is to obtain the equations of motion in Lagrangian coordinates, x;. First we

introduce a mean density p¥, defined so that

L

dpt = ouy
W-l—p -5-5 = 0. (2.12)
Next, (2.1a, b) together imply that
xt, ( ) tog ply oJ = pt, (2.130)
where J = det {0x}/0x,}. (2.13b)
But then (2.14) implies that
p=p+ and dpt/dt= 0. (2.14)

Thus p, the Lagrangian perturbation density, is identically zero, and from (2.13a), J is also
identically zero. Substituting (2.6) into (2.135) and expanding in §; it follows that

0&;/0x; = O(a?), (2.15)
while the same procedure applied to (2.134), and use of (2.15) shows that
1 0
Lopbl1-d=9_ (et 4
pr = [1-G gy, (660 )+ 0(et). (2.16)
Hence, by using (2.12) and (2.14), it follows that
oy d /1 o .
T i \2 o, 0x, (§i€5)>+ 0(a%). (2.17)
Also, from (2.10), and by using (2.15) and (2.16), it may be shown that
Bp’ = —§&;0p/0x;+ 0(a?), (2.18a)
| L
Logp-d>_Y _ (p¢.¢. 4
and o = 1-(5 ey, i) )+ 0(a). (2.185)

Here the Eulerian perturbation of the density is fp’ (rather than just p’) as the density has
been scaled by hydrostatic scales whereas the perturbation density should be scaled by dynamic
factors. Similarly the Eulerian pressure perturbation is fp’ (rather than just p’). Now it follows
from (2.6) that

uy = g+, (2.194)
where 12{ = dgi/dt, (2.19b)
and hence, by using (2.134) and (2.14), the equation of motion (2.1¢) becomes

dal dzg, J op  po
LG%¢ 9 VDL s
TRy YA (2.20)
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396 R. GRIMSHAW

To make further progress, let K;; be the ¢, jth co-factor of J, and so

Ox; N Oxy
Kii g, = O = Ky 5 f, (2.21q)
08\ _0¢; 08 %,
or Kij = 8y {1+ axk} 3%, =2+ 3€4m € ipg O, oxy (2.210)
It may readily be shown that
Ky =T ﬁxf and it o, (2.22)
%
0
Thus J—a—% = 2, (Kut), (2.23)

and so, by extracting the mean and perturbed parts of (2.20), it follows that, by using (2.15),

duz 10 pr
,3 ax <K1,,7p>+ ﬂ 61,3 = 0 (2'240)
and P C:lf;w%,%( iy agura ) 0(a2). (2.245)

The first of these equations, with (2.12) and (2.17), is the equation for the mean flow; the
second equation, with (2.15), is the equation for the perturbed flow. By replacing # with gp’
by (2.10a), defining 7 = £; and using (2.13) and (2.14), (2.245) becomes

_ &g o gt . 0 (. dab
L —_t L — P —E) =
T +ax B ox, 2 o (p ) 0(@). (2.26)

In this form, the equation for the perturbed flow is readily identified with its Eulerian counter-
part, noting that p’ is defined by (2.18a). To this point, we have used the smallness of a, but
have made no explicit use of the smallness of ¢, and the equations are exact to all orders in e.

It remains to consider the boundary conditions. We shall develop the theory suggested by
Andrews & MclIntyre (19784). First if F'(x;, t) = 0 is a material boundary, then

dF’/dt = 0 when F’' = 0. (2.26)
If we write F(x;, t) = Fi(x;+ §;, t), then this condition becomes
dF/dt = 0 when F =0. (2.27)

We apply this condition first to the rigid boundary 2z’ = —h(X,), and set F' = z' +A(X,).
Then FU = z+h(X,) + O(e%?), and the mean, and perturbed parts of (2.27) imply that

wl+eul 0h/0X,+0(e%®) =0 on z=-—h(X,) (2.284q)
and n+ek, 0h/0X,+0(e%®) =0 on z=-h(X,). (2.280)

Next, for the free boundary, (2.27) implies that F = F* and has no fluctuating part. Hence
let FU = ZY(X,, T)—z, and then (2.27) implies that

ag- 7L oft _ —u = 7L
¢ a6z X, = on z=¢MX,, T). (2.29)
The pressure condition (2.2¢) becomes
PP=0 and p=0 on z= X, T) (2.30)
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In Eulerian terms, the free surface is specified by F’ = {(X,, T)+{ —Z’, and since F’ = FL
it follows that

¢ =n—ef, 08/0X,+0(a®) on z =X, T) (2.314)
and Gl = C+(& 08’ Jox)+O0(e%?) on z = Ty(X,, T). (2.315)
Also, by (2.104), b= pp+& 0p/ox;+ 0(a?), (2.32)

and by combining (2.30), (2.31) and (2.32) we obtain the more familiar Eulerian boundary
diti -
condition, By +¢ 00z = O(a®) on z = Tu(X, T). (2.33)

Thus the g.L.m. formulation has the advantage that the free surface boundary condition is
just (2.30), and the free surface displacement {’ may be calculated from (2.31) a posteriori.

3. WAVE ACTION CONSERVATION
The equations for the mean flow are (2.14), (2.17) and (2.244). We put

P = po(Xa, T’ 2) + fa’pp(X,; T 2) + 0(at), (3.1a)
b = po(X,, T 2) + fa’py(X,, T 2) + 0(a%), (3.18)
@} = up(X,, T; z) +a?uly(X,, T; z) + 0(a%), (3.1¢)
o = &(X,, T) +a2B(X,, T)+0(ab). (3.1d)

The factor £ has been introduced into (3.1a, b) since the density and pressure have been scaled
by hydrostatic considerations, but their Eulerian second order means should be scaled by
dynamic factors. (The corresponding statement for the Lagrangian means is not true and p¥,
for example, is O(1) with respect to £.) Since the horizontal variable X, = ex, is O(¢) com-
pared with the vertical variable z, it is convenient to redefine @™, etc., by ew™, etc. The
equations for the basic flow py, po, Uy,, €W, are

g?%aw" =0, (3.20)

-g%‘.’, =0, (3.20)

Po 11))”§?+; gﬁ," 0, (3.20)

€2p, guj}?+; ?‘)[;0+ﬁ Po =0, (3.2d)

where -1—)1-)7, = 587,+ Ugq, 5—%—; +w, a% (3.2¢)
Since our scaling implies that the gradients of p, are O(f) we put

o _ _ppo e, Lo~ oy, (3.3)

0z aX


http://rsta.royalsocietypublishing.org/

/~
AL A

'\
s
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

398 R. GRIMSHAW

where N is the Brunt-Vaisala frequency. The boundary conditions are derived from (2.284),
(2.29) and (2.30), and are

Wo+uy, OR/0X, =0 on z=—h(X,)), (3.4a)
0 0
ag(l'*' Uy a)g; Wy on z = gO(Xa’ T)’ (3'4b)

The perturbed equations are (2.15) and (2.245), or (2.25), where, to within an error of
0(a?), we may replace p® by p, etc. We now put (cf. (2.94))

£ = (X, T;2,0), ctc. (3.4)

where 6 is defined by (2.94). Also we define the local frequency w and the local wavenumber
K by

—-w = 30/0T, k, = 00/3X,, (3.5a)
ok, Ow
so that 3T T ax ox, = 0. (3.55)

Then, by using (3.2) and (8.3) the perturbed equations are

, 6650 +gl = el +0(a), (3.64)
L, p’
Pow*? —=¥ 062 +Ka 60 = ¢F,+0(a?), (3.60)
poo#s L 2y p Ny = eFy - 0(e2), (3.6¢)
where OF = 0 =K, lg,. (3.64)

w* is the Doppler-shifted or intrinsic frequency. Here the O(e) error terms are given by

I=-0¢,/0X,, (3.7a)
og, 0f, Do* op’
F, = 2000* 57 (55) 400 55 B~ s — oM +0(6), (8.75)
‘D (3  Do* Du

* 0c

F, = 2py0 DT(E)@) +Po 7 DT-H‘E“ % ( DT)+O( €). (3.7¢)
We now put .

7 = ay, exp (i0) +c.c. + 0(a?), etc., (3.8)

where c.c. denotes complex conjugate. The equations (3.6) then become

. 0
1K, gla +alz1 = 61;!3 (3.9(1)
—Pow*zgla*‘i"al” = 61?1043 (39b)
2 *2 op’
Po(N2—w*2) gy + 2= = elig, (8.9¢)

0z
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MEAN FLOWS INDUCED BY INTERNAL WAVES 399

where L, F,,, F; are obtained by substituting (3.8) into (3 7) Eliminating, we find that the
equation for #,, the vertical particle displacement, is

aaz (po o %771) +pok (N2—w*2) 9, = eM;, K% = K, K,, (8.10a)

where M, = k*Fi3+ (pyw*2l; +ik, F,,) [0z. (3.100)
Also we have that £y = iy %77; +0(e), (3.11a)
#i =187 o). (3.110)

The relative simplicity of the equations (3.10) and (3.11) may be contrasted with the corre-
sponding equations obtained from the Eulerian perturbation equations, which are usually
formulated for the vertical velocity rather than the vertical particle displacement. The boundary
conditions are (2.285), (2.30), or

7y, = —ek,, Ohf0X, on z =-h(X,), (3.124)
Bbi—po = 6fpoE1u Duge/DT+0(6%) on  z = &(X,, T). (3.120)

Here we have used (2.32) to express p in terms of p’, and the basic flow equations (3.2¢, d) to
eliminate the gradients of p,.

Ignoring the O(e) correction term, (3.104) is an ordinary differential equation in z alone,
and with the boundary conditions (3.12) forms an eigenvalue problem for %, where » (or the
phase speed ¢ = w/k) is the eigenvalue (note that w* = w—«k,uy, (3.6d)), and «, is regarded
as a fixed parameter (see also (6.2)). A sufficient condition that w be real for real «, is that
the Richardson number (the minimum of N2(X, 0u,,/0z)~2, where K, = k,/k) be greater than
1 everywhere, and we shall assume henceforth that this is the case. It may then be shown
that the phase speed must be outside the range of ¥, #y,, (the component of the basic flow velocity
in the direction of «,), or equivalently, that w* does not vanish for any z within the flow domain
(Banks et al. 1976). The eigenvalue problem (3.102) and (3.12) determines a dispersion re-
lation w = w(k,; X,, T) where the dependence on X,,, T arises due to the parametric dependence
of (3.104) and (3.12) on X,, T through u,,, etc. The dispersion relation combined with (3.55)
determines @ and k, as functions of X,, T (or combined with (3.54) it may be regarded as a
partial differential equation for ). In general, there will be a number (possibly infinite) of
such modes, and we shall fix our attention on one particular mode. Multiplying (3.104) by
7., and integrating across the channel, it follows that

Y oo s W E Q] o
S |(5) rentfaz = [° povpazes | ()] 69
The magnitude of the left hand side of this equation is one-quarter of the integrated energy
density of the perturbed flow (the left hand side is one-half the kinetic energy and the right
hand side is one-half the potential energy). Differentiating (3.13) with respect to «, it may be
h that

shown Tha Vst = B+ Uy o, (3.144)

39 Vol. 292. A
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bo a771
where o =2 p 32 +k2p3 dz, (8.140)
3 b ¥ ()2
% = 2K“ f-hPOF ("5‘2) dZ, (3.146’)
S poUpw* ([0
Po Yo i
Uyt =2 [ oLt {( Ozl) +Kznl} dz, (3.144)
and V, = 0w/0k,. (3.14¢)

Here V, is the group velocity, and the magnitude of & is the integrated wave action density,
since || is just the integral of one-half the local energy density divided by w*; also |4,| is
just the integral of the local energy flux divided by w*, and Uj,,|#/| represents the convection
of wave action with the mean flow. These identities are due to Hector et al. (1972), who
considered this eigenvalue problem from an Eulerian stand-point. It may easily be shown
from (3.144) that when w* is positive (i.e. the phase velocity ¢ is greater than the component
of the basic flow in the direction of the waves) then ¥, «, is less than » (i.e. the component of
the group velocity in the direction of the waves is less than the phase velocity), while when
w* is negative, V,k, is greater than w. Thus although ¢ may not be in the range of the basic
flow component in the wave direction, it is possible that the group velocity component may
fall within this range. An example of this behaviour has recently been given by Thorpe (1978).

Turning now to the O(e) terms in (3.10) and (3.12) we suppose that #, etc. are expanded
in powers of ¢; then at the first order in ¢, 44 in (3.10a) and the corresponding terms in (3.12)
can be regarded as known. A necessary and sufficient condition that this inhomogeneous
boundary value problem has a solution is the compatibility condition.

&
f ' {771K2T13—‘_ (pow*2L, +ik, Fla)} dz

0 0 Du
[Po w*? 171 gla aX] —ﬂ [p *2 171 gla Ga] = 0. (315)
2==h z={,
This condition is derived by using the method of variation of parameters to solve (3.10a) and
then applying the boundary conditions (3.12). If we now substitute (3.7) into (3.15) it may be
shown by using (3.14), that the latter becomes

w

ot aX (V) = 0. (3.16)

This is the equation for conservation of wave action, and can be regarded as determining the
complex amplitude of 7,, which is left undetermined by the leading order eigenvalue problem
(see (6.1)). The result (3.16) was first derived for the present problem by Hector ¢t al. (1972),
who used an Eulerian standpoint (they considered only the case w, = 0). Although the cal-
culations leading from (3.15) to (3.16) are extensive they are considerably simpler using the
present Lagrangian formulation than in the Eulerian formulation.

The universality of the conservation of wave action in problems of this type is now well
known (Bretherton & Garrett 1969). Recently Andrews & Mclntyre (19785) have developed
an exact and general form for this conservation law. Their procedure is to form the scalar
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product of 9§,/06 with (2.20) and then apply the averaging operator. The outcome is the
exact wave action equation

D (-

As it stands this expression is of little value in the present context as the first three terms
(d/dt{...y and j = 1, 2) are O(e), and so the remaining term (j = 3) requires the evaluation
of 5y, p', etc., to O(e). However if the expression is integrated over the channel we obtain

e__a_f?‘ < §L< mLag@dg
oT ) v 60 dt “20 dt

¢ ox, fgL <P % Km> dz = 0. (3.18)

Here 4L is the Lagrangian mean of 4 (differs from % by O(e2a?) terms), and we have used the
boundary conditions (2.28a) and (2.29). We have also used the boundary condition

oL . OFv
30 Ko g

where FL is the Lagrangian mean of a materlal boundary F = 0 (on which d¥/d¢ = 0 (2.27)),
and is derived by differentiating the relation F = F% with respect to 6. The boundary con-
dition (3.19) states that the component of the flux (¢ 0£;/00 K;) in the direction of the normal
to the material boundary vanishes (see Andrews & MclIntyre 19785). Evaluating the integrands
to leading order in ¢ and @, and with (3.144), leads to (3.16) for |#Z|. Of course, this derivation
of the wave action equation, although elegant and elementary, has the disadvantage that it
is assumed that the asymptotic expansions of &; etc. in powers of e exist. The previous deri-
vation leading to (3.16) establishes that the wave action equation is a sufficient condition for the
existence of this expansion, at least for the first two terms, and also contains an equation for
the phase of &/.

Finally, in this section, we note that in the Boussinesq approximation £ - 0, by virtue of
(3.3), po becomes a constant in (3.10a) while the boundary condition (3.125) becomes 7, = 0
on z = {, Our scaling has been designed to study internal waves. By contrast the surface
wave has a frequency which scales with - and a pressure perturbation which scales with
AL If we rescale in this manner, and then take the limit § — 0 our results reduce to the
corresponding well known results for surface gravity waves (see Bretherton & Garrett 1969).

E)X

=0 on FU =0, (3.19)

4. MEAN FLOW EVOLUTION

The equations describing the evolution of the mean flow are (2.12), (2.17) and (2.24a).
As shown by Andrews & Mclntyre (1978a) the latter equation can be written in a number
of alternative forms, by using the various identities (2.124, 4) and (2.22) for K;;. In problems
involving incompressible flow, it seems preferable to introduce the Eulerian mean pressure p,
and the Eulerian perturbation gp’. Then (2. 24a) becomes

Ldak 1 0p )
+,36 ,3 8 ax,- = 0, (4.1a)
_ ap’ 18,6 0% 10 ap
where Ry = (b oty S0 5 o (6180) G )+ 0 (4.18)
39-2
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402 R. GRIMSHAW

It is customary (Andrews & Mclntyre 19784) to call R;; the radiation stress tensor, although
in the present problem it is not the sole term describing the effect of the waves on the mean
flow (there is another term in (2.17); cf. McIntyre (1973), who considered the special case
of constant Brunt-Viisala frequency N2 in the Boussinesq approximation (f->0) in the
absence of shear flow (zy; = 0)). However, like (3.7), (4.14) is not a very convenient equation
to use in the present problem as for ; = 1, 2 all the terms are O(e) except those involving R,s,
and hence this latter term requires the evaluation of 7y, p1, etc., to O(¢). Fortunately, Andrews
& Mclntyre (19784) have presented an alternative mean flow equation which avoids this
difficulty. This is obtained by first multiplying (2.20) by 0x;/0x; and then applying the averaging
operator {...). The result is

d _ 1 oph 1 d our 9o ,.., .,
T T o et O = P P ), (4.20)
where Py = — iy 08;/0x;). (4.20)

Being exact, (4.24) is equivalent to (2.24a). We recall from (2.194) that 4; = d&;/dt. Following
Andrews & Mclntyre (1978a, b), &, is called the pseudomomentum. All the terms on the
right hand side of (4.22) now have the same order of magnitude as those on the left hand side
with respect to the small parameter ¢, and consequently the right hand side can be evaluated
entirely from the leading order relations (3.11), where 7, satisfies the leading order eigenvalue
problem (2.10a) (see also (6.2)). The boundary conditions for the mean flow are (2.28a),
(2.29) and (2.30) and contain no forcing terms due to the waves.

The outcome of evaluating &, etc., is described below, where we have used (2.10, ¢) to
replace p™ by p. We find that, to leading order in @ and e,

_Dpar 1 0p
b +36§¢ = a®%, (4.3a)
D, o _, 0  _.0
and '5—7"1 - aT+ua aXa+w aza (4’3b)
and the wave forcing term £, is given by
D Oug,, O 0*2 |0y, |2
X, = DT(K F)+ /9 a} +6X {PoNzl%Iz‘Pow*Wllz—Po?{ “a‘% }"‘%ﬂMa“)*f,
(4.40)
and F = 2pow*{|n|*+1/x% 01,/ 02| (4.40)

Here & is the wave action density, and the integral of & across the channel is &7 (3.14/).
For the vertical component of (4.2a) the simplest expression is obtained by replacing p¥ by
b, and pl by p (by using (2.16) and (2.185)). The result is

VLT D o pwei

Vi az+ﬁ =—a oz {2:00(‘) |771I }? (4.5)
which can also be obtained by applying the averaging operator (...) directly to the vertical

component of the Eulerian equations (2.1¢). The remaining equations are (2.12), and (2.17)
which simplifies to oaL  Owh

D (&
I T S (R 2 o
X, "oz = DT(az2|’7l| ) (4.6)
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correct to leading order in a and €. The relation between pv and p, or pL is (2.185), or (2.16)
which simplifies to o2
P = p— @z {polml|?, (4.7a)

_ o2
or pl = pl—dpy 5 |m*. (4.75)

Equations (2.14), (4.34), (4.5)-(4.7) form the complete set of equations for the mean flow
quantities #¥, ew®, p and p“. The boundary conditions are (2.28a), (2.29) and (2.30); since
the latter involves p“ we must use (2.10a, b) to relate p and p-. We find that

B* = p+pp° (4.84)
and PP = a*(w*F —py N2, |?). (4.8b)

To find the corresponding Eulerian mean velocity we must use (2.104, ¢) to evaluate the
Stokes velocity.

g 0 [k,w* O 0u, 0%ug,
73 = ot (S 2 e S o, r Tl (4.90)
D (0 0 ou Ou 0 (k,w O
w8 - _— [ 2 s 2 “*0a 0o 2 __ - (la™ T 2
w DT(aZ I”ll )+aXa (I 1I )+aX azl 1I aXm ( KZ az l"]ll )9 (4'9b)
and #, = 4% —aus, w = wl— a?ws. (4.9¢)
It is now readily established that
ouy owS  , D (02 .
) ol rai ﬁw('é';é A ), (4.10)

and comparing this with (4.6), we can confirm that the mean Eulerian velocity #,, @ is diver-
gence free; of course, this result follows immediately from (2.14). If (4.9¢) is substituted into
(4.3a) we obtain an equation for the mean Eulerian velocity i, ; it can be verified that the
result is equivalent to directly averaging the Eulerian equation (2.1¢). From (2.31a, b) we
obtain the equations relating the mean Eulerian free surface displacement ¢ to the mean
Lagrangian free surface displaccment gu;

Po®*? | 01y
2/3[ e L{o (4.11a)
and = b—a?ls. (4.110)

If the mean flow equations (4.24) are integrated across the channel, and we use the
boundary conditions (2.28a), (2.29) and (2.30) (with (4.84, b)), we find that

O ([T Lnae @ ([T i } KNG }__gk_[g ]
a‘T{ P dz}*‘aXﬂ{ P dz +aXa! Y L > ol i 24 W

0 0 w*4 | 0y, 2
3T, (Fyx) -0 (ﬂ [&'_K_‘l_. ’a% L g). (4.12)
@ = 6o
Here 4, is defined by (3.14¢), and we have made use of (3.13), the equation obtained from
(3.13) by differentiation with respect to X,, and the wave action conservation equation (3.16).
(4.12) can also be simply derived by integrating the alternative mean flow equation (4.14, )
across the channel. From (3.14q), 4, = (V, - U,,) &, where V, is the group velocity, and U,

= —q% —
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404 R. GRIMSHAW

defined by (3.14d), can be regarded as an integrated form of the basic flow, weighted with the
wave action density. The tensor %k, is similar to radiation stress tensors encountered in the
forcing of mean flows by waves in unbounded media (see, for example, Garrett (1968), Dewar
(1970), Bretherton (1971) or Grimshaw (1978)). It is the dominant term in the right hand
side of (4.12) for internal gravity waves in the Boussinesq approximation (£ — 0); however,
for surface gravity waves, there is also a significant contribution from the second term on the
right hand side of (4.12) (see Garrett (1968)). Also, integrating (4.6) across the channel,
and using (4.11a, b) we find that

ag E 7L —
T U_h L dz} =0, (4.13)

while integrating (2.12) leads to

O [% ,u 0 ¢ Lz }_
aT{ “hp dz}+aXa{f_hp iy dzp = 0. (4.14)

Although no wave forcing terms appear explicitly in (4.13) or (4.14) there is an implied wave
forcing term due to the fact that ¢, the mean Eulerian free surface displacement, appears in
(4.13) rather " For internal gravity waves in the Boussinesq approximation, this difference
can be ignored, but it is significant for surface gravity waves. The integrated Stokes flow may
be simply calculated from (4.94) and is

[
[7atdz = o [* e Gl dzvnanp {22
h

%2
0z

Ouy, w*4}

L%. (4.15)

For internal gravity waves in the Boussinesq approximation (8-> 0) the significant term is
the first term which vanishes in the absence of a shear flow.

Finally, we substitute (3.1) into (2.12), (2 16), (4.3a), (4.5), (4.6) and (4.7) to obtain the
equations for the second order quantities #3;, etc. We find that

D ap, Qos , r el | g, 0Ps
pO {DTu2a+ 2’)/ aX +w az}+ Pa DT aX ,@ (4'16‘1)

Py -

Dok =~ 2py*2* =200 N = [maf? o2 (pu V'), (4.165)
dug, owy D (&, '
X, "oz = ‘D'T(ﬁ? [74] ) (4.16¢)
D
D_Tp%‘ = polisy M, +po N2w, (4.164)

while the boundary conditions (2.28), (2.29) and (2.30) become

wl+al oh/0X, =0 on z=-hX,), (4.174)
ai% 7L a§0 L E)anE)_{,’o_ = gk =
aT+ 20 aX +aX (u0a€2)+€ az an = Wy on zZ = gO(Xw T)> (4'17b)
and
_ 2p,w*2 | 0 4190
ﬂ/’z“Pog‘L = ﬂ{— p(;.z 771 - B%(2p, “’*2“P0N2) 67;1 } on z= (X, T)
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Here we find it convenient to use the mean Lagrangian density gp¥, rather than its Eulerian
counterpart. The two are related by (4.74, ),

_ - ) 0
P2 = P%‘—gz {PoNglﬂllz}“PoNz 2 l’hlz- (4.18)

In the Boussinesq limit (§ — 0) the terms involving # explicitly in (4.10) and (4.17) may be
omitted (so that (4.17¢) becomes I’ = 0 on z = {,) and p, regarded as a constant.

5. APPLICATIONS: (1) STEADY MEAN FLOWS

We put X = X, and suppose that the basic flow depends only on z and X. We put u, = 4,
Vo = Vgg, Uy = Uy, VY = Wk, and k; = [, k, = m. Then assuming that the wave variables #,,
etc., likewise depend only on z and X, it follows from (3.54) that » and m are constant, and
the wavenumber / is determined from the dispersion relation @ = w(/, m; X). The dependence
of the waves on X, and the consequent forcing of mean flows is due to the inhomogeneity of
the basic flow (e.g. by the dependence of the depth % on X). The equation for conservation

of wave action (3.16) reduces to
Vie/ = constant, (5.1)

where V] is the component of group velocity in the X-direction and is given by (3.14¢).

To make further progress we need to know 7, from the eigenvalue problem (3.104) and
(3.12a, b) (with the right hand sides of these equations replaced by zero). In general, this
information must be obtained numerically. However, an approximate method of solving
(3.10a) is to assume that the vertical scale of the waves is much shorter than the vertical scale
of the basic flow (p,, u,, etc.) and to use a W.K.B. approximation. Then 7, is given approxi-
mately by

9 & A(pyw*2n)~tsin ¢, (5.2a)

where é = j * nds, (5.20)
~h

and n = k(N2/w*2—-1)} (5.2¢)

and we have applied the bottom boundary condition (3.124). Here n may be identified as
the vertical wavenumber, and is real for internal gravity waves, and the amplitude 4 is a
function of X alone. Consistently with the W.K.B. approximation, we use the Boussinesq
approximation £ — 0 so that the top boundary condition (3.125) reduces to 7, = 0 on z = {,.
This implies that %
¢0=J-hndz=rn:, r=1,2,3,.... (5.3)
The integer r identifies the various modes; (5.3) is an approximation to the dispersion relation.
Evaluating &/ and V] from (3.14) we find that (5.1) becomes

Irm [% y,N2
P Rl 0
4 < +f—k nw*3

pr dz} = constant. (5.4)
Once the behaviour of / with respect to X has been determined from the dispersion relation,
the quantity in brackets in (5.4) is known, and (5.4) then determines the variation of 4 with
X. We shall illustrate by considering three special cases.
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406 R. GRIMSHAW

(@) Zero basic flow

If uy, vy, wy = 0, then p, = p,o(z). Further, if N2 is a constant and the Boussinesq approxi-
mation is made, then (5.2a) is exact, n (5.2¢) is independent of z and the dispersion relation
(5.3) becomes nH = rn, where H = {,+h is the total depth. This is the solution obtained by
Keller & Mow (1969) to describe shoaling internal waves (see also Dore (1970) and McKee
(1973)); from (5.2¢) k varies inversely with H, and so the horizontal wavelength (2rnx~1) is
proportional to the total depth H; Keller & Mow (1969) have shown that this result is in good
agreement with some experiments by Wunsch (1969) ; also the W.K.B. approximations agree
with the exact solutions obtained by Wunsch (1969) for waves on a constant slope in the short
wavelength limit. For normal incidence (m = 0 and « = [) the wave amplitude |4| varies
as H-%, or the amplitude of 7, (proportional to |4|n~?) varies as H-!; as pointed out by McKee
(1973), the amplitude of the pressure p; (3.115) remains constant as / varies.

(0) Top-intensified basic flow
A simple extension of case (@) is to suppose that the upper surface is rigid ({, = 0),
uy = uy(z),vy = wy = O whereu, = 0 for z < —d, where dis a constant such that 0 > d > A(X)
for all X. This condition excludes the presence of a beach (4 = 0), and this case describes the
propagation of waves over a gentle step. Assuming that N?is a constant, the dispersion relation

(5.3) becomes
N2 3 o /N2 3
K{Hd (32-—-1) +J d(w—*z—l) dz) =, r=12,3,..., (5.5a)

H; = h—d. (5.5b)
The effect of the shear is through the second term on the left hand side of (5.54); this term
can be neglected if kumd < wH(1 —w?/N?), and then « varies as H3z' (here uy, is the maximum
value of |uy(z)|). Likewise |4| then varies as Hz# for normal incidence. Explicit calculations
with the profile «, oc (z+d) show that the effect of a positive shear flow (i.e. , > 0) is to
decrease « below Hj! for low frequencies (w = 0), and to increase x above Hjy! for high fre-
quencies (w ~ N); a negative shear flow (i.e. 4y < 0) has the opposite effect. There is a
corresponding change in the behaviour of 4, determined by (5.4); the second term on the
left hand side of (5.4) can be neglected if K2undN < (rr) w3(1—w?/N?)} Generally this second
term is significant only at low frequencies and decreases || for positive shears, while increasing
|4| for negative shears, relative to Hg?.

(¢) Uniform basic flow over a step

If uy is not zero at z = — A4, the effect of the slope is to distort the isopycnals of the basic flow
and p, will depend on X as well as z. To obtain some information on this case consider the
propagation of waves over a gentle step (figure 1) at normal incidence (m = 0) and suppose
that u, is a constant when H is a constant (i.e. regions 1 and 2 in figure 1). Then %, will remain

a function of X alone and we may put
ugH = constant = M;,, H = {,+h. (5.6)
We shall also assume that v, = 0. From (3.20) the density p, will remain constant on the
streamlines of the basic flow. Assuming that N2 is a constant in regions 1 and 2 it follows that

N2H = constant = N3. (5.7)
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Again by using the Boussinesq approximation (# - 0), the dispersion relation is (5.3), and
since 7 is independent of z we have nH{ = rr, when 7 is given by (5.2¢). But now, since N2 and
uy depend on A through (5.6) and (5.7) the dependence of ¥ on H is an involved one, and is
given by

NiH
K2H? {——0—— 1} = r2n2 3
(= sy &
z
AN 1\\\\\\\\\\\\ ANANE VL NN NN \;X
region 1 H region 2

77777777777 7777

M

Ficure 1. The coordinate system for case (¢), uniform basic flow over a step.

The relation is graphed in figure 24. The shaded region is forbidden, being the region where
the quantity in brackets in (5.8) is negative. As the basic flow is reduced, M, - 0, and the curves
resemble those labelled (i) in figure 2a. When w«M;, — 0 the basic flow is in the same direction
as the waves and for small values of M,, x varies on the S-shaped curve (i), generally increasing
as H decreases (this portion of the curve corresponds to the curve which would pertain if
M, = 0), until a point is reached when the intrinsic frequency w*(w —ku,) becomes sufficiently
small that a further decrease in H causes a decrease in k. When w«M; < 0 the basic flow
opposes the waves and for small values of M, k varies on the loop curve (i), either increasing
or decreasing as H decreases, depending on the initial value of « in region 1. For moderate
or large values of M,, the curves resemble those labelled (ii) in figure 2a. The loop curve ulti-
mately disappears as M increases and the S-shaped curve is replaced by a monotonic curve
on which « decreases as H decreases. The variation of the amplitude with H is determined
from (5.4); for normal incidence in the present case this simplifies to

A2 wHk=3+ MyH?(rn) %/ (wH — kM,)} = constant. (5.9)

This relationship is graphed in figure 25, which shows the variation of |A4(p,w*2n)=3|, the
amplitude of 7, with H (the curves have been arbitrarily normalized so that this amplitude
is 1 when Hw?/N?is 0.5). Each curve shown corresponds to a curve in figure 24, as designated.
For wkM, > 0 (the basic flow in the same direction as the waves) |4(p,w*?n)~#| generally
decreases as H decreases, although as M, - 0, the variation of |A(pyw*?n)~#| with H will
contain an S-shape similar to the curve (i) for « with A in figure 24. For wxM, < 0 (the basic
flow opposes the waves) |4(p,w*2n)~%| follows the crescent shaped curves in figure 25. These
show that |4| — oo at the two values of H where dk/dH — oo in figure 2a; these two points
are the values of H where the bracket in (5.4), or (5.9) vanishes, and corresponds to values
of H where the group velocity vanishes. These are caustics where the waves are reflected. The
analysis of this paper fails at a caustic, and an extended theory, such as that described by
McKee (1974) for internal waves on a transverse current, is needed.

40 Vol. 292. A
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Turning next to the equations for the wave induced second order mean flow (4.16), we see
that these become in the present context.

SOCIETY

Ouy ouy Ou 0
Po 7% aX (o 45) +po 03 oz %+ oty az +pp3 ( E)X+ 03 0)+6{/)Y2' %, (5.104)
oy o Wy .
pO (uO aX+ 0 az+u0 a)(()' L 0) =‘%2> (5'10b)
0
Py pp =L {2pow*2|m|2—2pozv2m|2} mal? 2 (o), (5.100)
d
ol ouy  ow 0 0
Xt ( ogx az) (8z2 | ) (5.104)
0 0\ _ _ _
(uo ax T a_z) Py = poul My +powy N2, (5.10¢)
w*H/N? ©H/N?
w
0
wMyk/ N} [4(pow*2n)~3|
Figure 2. (a) A plot of w*HN;? against wM, Ny 2k for two cases: (i) , P2 ME N8 = 2.5 % 1075; (ii) ===~ ,
PrewSMENG8 = 1% 1073, The hatched curve is where the quantity m brackets in (5.8) vanishes. () A plot
of wzHN ~a agamst | A(pow*2n)~%| for two cases, (i) and (ii), as designated in (a). Both curves are normalized
so that [A(pow*zn) 3| = 1 at w?HN;? = 0.5, on the branch where oMk > 0.
y while the boundary conditions are
2 _ ah ’
4 Wy +uy Fap=0 on z=-h(X), (5.11a)
_o 0 au o¢, _
L 0 270 750 _ L —

Uz aX aX(0§2) aX 2 on z = §03 (5‘11b)
and (4.17¢). The equation for 7§ uncouples from the remaining equations and can be solved
once iy and wy have been found. The forcing terms %, , are given by (4.44) and simplify in
the present context to

0 0
By = o5 (0 F) + 0y 5= (IF) +4pMy *F
6 Pow*2 | Oy |2
u R ST A I NG O RCRER
© d _ 0 avo
%, = (uo o 52) (mF) + 17 (5.125)
where & is defined by (4.45).
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(d) Zero basic flow (continued)
If uy, vg, wy = 0, then (5.10) and (5.11) have the exact solution

i} =0, @l =0, (5.134)
N w? | on, |?
by = P0N2|771|2‘P0w2|771|2"p0,}'2' 57721 ) (5.132)
~ Lo, [P
L 2 24— |21
! ﬂpon{[mI +=5 13, }, (5.13¢)

while (4.17¢) determines £&'. The vanishing of the Lagrangian mean velocities #Y, @} is con-
sistent with the presence of a beach (cf. Wunsch 1971). There is then a non-zero Eulerian
mean velocity, which by (4.9¢) is just the negative of the Stokes velocity (4.94, 5). In the
present case the Stokes velocities are

lw 0% g mow O?

ﬁs = = —K—§-~a7z I')?llz’ (5.14d)

K2 6_2_2 |771|2,

_ 0 (lv 0
S = _EY(F % |,,1|z). (5.145)

However, the transverse Lagrangian mean velocity 7§ cannot be determined within the present
framework; its determination requires the introduction of frictional considerations such as
those used by Hogg (1971) in a study of the oblique incidence of internal waves onto a beach.
For normal incidence it seems plausible that 7§ is zero, but this may not be so for oblique
incidence (m # 0); indeed Hogg (1971) has argued that the Eulerian mean transverse velocity
7, is then zero, and so 7§ is not zero, but is given by #° (5.144). The Eulerian mean density
is given by (4.18) and (5.13¢); in the Boussinesq approximation (£#-0), p§¥— 0 but p
remains non-zero. The mean Eulerian displacement of the isopycnal surface z = z,is (0, N?)~1 p
evaluated at z = z,. Using the W.K.B. approximation (5.2) to evaluate (5.13) and (5.14),
we find that p}* ~ 0, and

Ba = — (1 42/6®) cos 26, 7, = (2N?|A[2/a?) sin 2, (5.150)
Po @S = 2|A|%(nl/wk?) cos 2¢, peT® = (2|4|*ml/wk?) cos 2¢. (5.150)

Wunsch (1971) derived the mean flows generated by internal waves shoaling over a constant
slope for constant Brunt-Viisila frequency N; in the limit of small slope his solution reduces
to (5.15). From (5.4), |A4|2/ is proportional to %, and for constant N?, k and n both vary
as H-'; hence #® varies as H-3, indicating substantial mean Eulerian flows as the beach is
approached. Wunsch (1971) has discussed the implications of this in the oceanic context.

(e) Top-intensified basic flow (continued)
Here w, = 0, but u,(z) is not zero for 0 > z > —d, where d < A(X) for all X. It is now

immediately apparent from (5.10d) that the Lagrangian mean velocities #¥, @} cannot be

zero. To solve (5.10d) we put
_ 02 o(u, _
Ty =t g I1h|2+—(a°'z V) gy = _d) (5.16)

40-2
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410 R. GRIMSHAW

Then, on eliminating p, and p¥ from the remaining equations, we find that

o7
7z (Pou% Of) +po N2y = (Pow*2 {"’7 |2+ azl }‘*"" {lqu —Poly =75 azz ]%l },
(5.17a)
Y= -8 at z=0. (5.175)

Here Tl is given by (4.17¢), and p§ = —p, N2 In the region z < —d, u}, wy are zero, but
from (5.17a), it follows that p, and p¥ are given by (5.135, ¢), as in case (a). To make further
progress in the region z > —d, we use the W.K.B. approximation (5.24). Then (5.17q)
simplifies to

o 2 4dn2y2
{Pouo 3 1{+N2¢} |4]2 [ luy (n (Kz_ 1)+ o ] sin 24, (5.18)
with the approximate solution,
Alu 2 (n? dn2y
¥ % (_J_Vl—l—éfngTﬁ) [ZF (7?2_1)+ e 0] sin 2¢), (5.19)

by using the boundary conditions (5.175) with & = 0 (&' is O(B) from (4.17¢) and is thus
zero in the W.K.B. approximation). For weak basic flows, ¥ is O(y,) as |uy| - 0, and the
principal contribution to the Lagrangian mean flow is the term uy 02|7,|?/022 in @} (5.16).
The approximate solution (5.19) fails whenever N2 = 4n%g3. If ¢, is the long wave phase speed
(i.e. the limit of ¢ = w/k as k - 0), then (5.2¢) shows that (¢y—u,)? n* = NZ; for a wave of
mode number 2r, this becomes (¢,—u,)% 4n* = N2 Hence the approximate solution (5.19)
fails whenever the long wave phase speed ¢, vanishes for the long wave mode, with mode
number 2r. Indeed, if the left hand side of the exact equation (5.174) is compared with the left
hand side of (3.10a) (or (6.24)) in the limit x — 0, then we see that the free solutions of (5.17a)
(solutions when the right hand side vanishes) will be long waves if ¢, is zero for any long
wave modes. Thus if ¢, vanishes for any long wave mode, there is no steady solution for the
Lagrangian mean velocity, and we may expect instead a resonant growth of the mean velocities.
Of course our hypotheses that the basic flow is stable will generally exclude this possibility
as ¢y, like ¢, must lie outside the range of #, which includes zero in the present case. However,
the above discussion indicates the possibility of large Lagrangian mean flows whenever ¢,
become small. The approximate solution (5.19) and also the exact solution of (5.17a) also
fail if ¢, = 2u,; this can only occur for isolated values of z, and is indicative of locally large
mean velocities. The transverse Lagrangian mean velocity is readily determined from (5.105)

and (5.125), and is
771

V3 = 2pymw* {‘771\2

} for z > —d, (5.20)
but as in case (a), cannot be determined in z < —d where u, is zero.

(f) Uniform basic flow over a step (continued)

Here m = 0, v, = 0, but 4, = u,(X) and is given by (5.6). As in case (), it is apparent
from (5.10d) that @}, @} cannot be zero. We can satisfy (5.105) with 7§ = 0, and (5.10d) by
putting o d

ay = azzl%l + uo?/f), wy = wo@ Wllz“ﬁ(”o’ﬁ)~ (5.21)

Then (5.10¢) can be satisfied by ~
Py = —pyN¥y. (5.22)
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MEAN FLOWS INDUCED BY INTERNAL WAVES 411

Elimination of p, in (5.104, ¢) then yields an equation for ¥. The boundary conditions are
(5.11) which simplify to Y =0 on z=—hX) (5.230)

=8 on z={(X). (5.23b)

Equations (5.21), (5.22) and (5.23) hold even when #, = #y(X, z) and not just for the present
case. However, even in the present case the equation for ¢ is quite complicated, and to make
further progress we shall consider only regions 1 or 2 (figure 1) where #, is a constant and
w, is zero. Under this condition the equation for ¢ is again (5.174). By using the W.K.B.
approximation (5.2a), an approximate solution is again (5.19). The comments following
equation (5.19) again apply. The variation of x and |4| with H are shown in figure 2; it can
be shown from (5.19) and (5.21) that &} will be larger when H is smaller. For weak basic flows
the first term in (5.21) dominates, and @} varies with X as H—%.

6. APPLICATIONS: (ii) MEAN FLOWS INDUCED BY MODULATED WAVES

In this section we shall suppose that the basic flow is homogeneous (i.e. a function of z
alone) and consider the mean flows induced by modulations in wave amplitude. Thus we let
Upy = Uy = Up(2), Ugy = Vg = 09(2), Wy = 0, py = po(2) be a solution of the basic flow equations
(3.2). We also choose % to be constant, and {, = 0 so that the boundary conditions (3.44, b)
are satisfied. Consistently with these hypotheses we can satisfy (3.54) by choosing «, and @
to be constants. There is now no explicit dependence on X,, T in the eigenvalue problem for
7, ((3.10a), (3.12a, b)) where the right hand sides are zero), and so we may write

m = A(X,, T)f(2) +0(e), (6.1)

where the modal function f satisfies the eigenvalue problem

% (002 L) +po(ye-wr) £ = 0, (6:20)
f=0 on z=-h (6.20)

*2
fﬂ%ng:O on z = 0. (6.2¢)

We can assume that fis real-valued without any loss of generality. The dispersion relation is
now just w = w(k,). We shall suppose that the waves travel in the positive X-direction (X; = X)
and so put k; = K, k = 0. However, it follows from (3.14) that the group velocity is not
necessarily in the X-direction, and will have a component in the Y-direction (X, = ¥) when-
ever v, is not zero. We let V; = V be the component in the X-direction, and W = V, be the
component in the Y-direction; by using (6.1) in (3.14) it follows that both V, W are constants.
Also, by using (6.1) in (3.145) it follows that the wave action density </ is equal to 4% multi-
plied by a constant. Hence the equation for conservation of wave action (3.16) reduces to

04 04 04

6_T+ V5'X+ Wa—Y' = 0, (63)
and so 4 = A(X—VT, Y—WT); modulations in the wave amplitude propagate with the
group velocity, and (6.1) describes a wave packet.

40-3
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412 R. GRIMSHAW

In the equations for the wave induced second order mean flow (4.16), the forcing terms are
now functions of (X—VT), (Y—WT) and z. We shall seek solutions which likewise depend
only in these variables, and so replace /0T by —V 8/0X— W 9/0Y. Again writing #}} = #¥,
#Y = vy, equations (4.16) reduce to

ou oud . Ou )
po ((t0=7) 3k + (00— ) 2 1 a°}+a{;; @, (6.40)
aij_g‘ 81)2 avo apg
oy {(uo- V) ot (s W) L+ wp e }+a—7 = (6.48)
Lewrk = 1 [- 2 oot -20 0312 L (oo, (6.40)
duy ovk owk 022 0 0
I E = o | V) apt =W gy ] I (6.44)
(v~ V) 22 P | (v, —u) oy Y p N, (6.4¢)
while the boundary conditions are
w¥ =0 on z= —h, (6.54)
7L
-1 s - Ly on 2, (6.55)

and (4.17¢). The forcing terms %, , are given by (4.44) and simplify in the present context to
= 2ot [ 45 (L)) [ - 7) g+ =) %,] |42

{posz‘" = pow**f*— p"K (af) } ax 14I%  (6.6)

and &, = {poszz—pow*zfz po*? (af ) } |42, (6.6)

k2 \oz

The Stokes velocities are given by (4.94, b) while the Eulerian mean density is given by (4.18).
Using these equations and (4.9¢) we may reformulate the equations (6.4) in terms of Eulerian
mean quantities. When #,, v, are zero, the resulting equations then agree with those obtained
by Grimshaw (1977), Thorpe (1977) and Leonov et al. (1978).

(a) X-dependent modulations

Suppose first that the amplitude contains no dependence on ¥, and 4 = A(X—VT). Then
n (6.4), (6.5) and (6.6) we may put terms involving 9/0Y equal to zero. Equations (6.44, ¢)
can then be solved by putting 17%‘ = 0, and

_ 0
ay = |A|2 +|A]2 -My, o =—(uy—=V)y e |4]2, (6.74)
and Py = —po N2y | 4|2 (6.70)
Substitution into (6.4a, ¢) and elimination of p, leads to the equation for i :
0 0
52 (Potto =12 L) g ey = (6.80)
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4, = 5 o) |1+ (X))

+6a}: :2Pow*/c(uo V) (fz (af) ) —poltg— V)2 %2} (6.85)

where

The pressure is given by
- ) *2 /0f\2
Bo+Poluo— V)z'a‘;zé 4% = {PON2 2"/’0“)*%}‘2—/‘)‘0’%‘“(‘!) } |4

2£2
+{2p0w*/<(u0 V) (fz'f' (af)) Po(ug—V)? %} |4[2. (6.9)

The boundary conditions (6.5) become
Yy=0 at z=-h, (6.104)

v=Blae= V2L = -t s 2010 [ 245 (Z)]
+(uo—V)2§£-:} at z =0, (6.105)

while &G =—yld]2 at z=0. (6.10¢)

If the homogeneous equations for ¢ (i.e. (6.84a) and (6.104, ) with zero on the right hand sides)
are compared with (6.2) in the limit x — 0, we see that the free solutions for ¥ will be long
waves if V = ¢,, where ¢, is the phase speed of any long wave mode. When this occurs the
inhomogeneous equations (6.82) and (6.104, ) cannot be solved for ¢, and instead there is
a resonance between the wave packet and a long wave mode. Equations describing this res-
onance have been developed by Grimshaw (19%77) for the case 4, = v, = 0; the corresponding
equations in the present case will be described elsewhere.

Equation (6.8a) has a singularity at any level of z = z; where yy(z;) = V. Thorpe (1978)
has recently shown, for one particular case, that this phenomenon can occur, even though the
phase speed ¢ must lie outside the range of #y(z). In this case the homogeneous form of (6.8a)

has the two solutions Vi = (z—20)H9 {1+ 0(z—2,)), (6.110)
where w243 = N*(0uy/02)72|,_,, (6.115)

and we are assuming that p,, #, are analytic functions of z near z,; u is real by our hypothesis
that the basic flow is stable. The general solution of (6.84) is then

Y = A+ Ay + 9, (6.124)
where Yy 1,#+f A "h gﬁ..f '//l#+ dz, (6.125)
and W = po(Ouy/0z)?|, (6.12¢)

Now the modal function f is analytic at z,, and so .#; (6.85) is also analytic at z = z,. It can
then be shown from (6.114) and (6.125) that the particular solution i, is analytic at z,.
Assuming that there is no long wave resonance, the imposition of the boundary conditions
(6.10a, b) then determine 4+ uniquely, and in general will be non-zero; they can both
vanish only in the unlikely event that ¢, satisfies both boundary conditions. Thus our solution
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414 R. GRIMSHAW

for ¥ will contain a singularity at z = z, described by (6.114). From (6.7) #} and p3 are
proportional to |z— zg|~#*# near this singularity. Of course, our assumptions that lead to
(6.84) have failed for z near z,. Nevertheless we can conclude that there will be substantial
mean flows generated at such levels. The principal assumption which has failed is that 9/07
can be replaced by — ¥V 0/8X. Retaining the time derivative would lead to an analysis similar
to that given by Booker & Bretherton (1967) for the time development of a critical level. On
this basis we can conjecture that (6.124) will hold outside a region in which |z — z| is O(T-),
while around the critical level, ¥ will remain unsteady and become large.

Another aspect to the solution (6.124) is its highly oscillatory character near z = z,, where
the vertical length scale is u|z— zg|~'. Further, it is apparent from (6.8a) that whenever
|ug— V| is small, 3 will have a vertical length scale of O(|uy,— V|N-1). When there is no basic
shear flow (z, = 0, v, = 0), Chimonas (1978) has obtained solutions for mean flows generated
by internal gravity wave packets in a model of the planetary boundary layer, and has suggested
that shear flow instabilities may be associated with the small vertical scale of the induced
mean flow. Leonov et al. (1978) have commented that internal gravity wave packets in the
ocean are responsible for the development of a vertical microstructure in the mean velocity
and density fields, and have made some calculations for models of the ocean when there is no
basic shear flow. In both these cases the vertical scale of the forced mean flows is O(VN™).
The presence of a shear flow alters this scale to O(|uy— V|N-1); the microstructure is then
localized to levels where |uy— V| is small, but the potentiality of realizing microstructure is
increased as it may be easier to find circumstances when |4y — V| is small, rather than just V
is small.

If |up— V| is not small over the flow domain then we may use the W.K.B. approximation
(5.2) to evaluate .#;, and so obtain an approximate solution to (6.84). The result is

- (ug—T) 2k (n? 4n(uy— V)] .
P ~ [N2—4n2(u0- V)z] [c_u_; (;E_ 1) +—-W-—:| sin 2¢. (6.13)

This solution is ¥, and so the first term of the W.K.B. approximation satisfies the boundary
conditions. The solution fails whenever the denominator vanishes, which can only occur at
long wave resonance, V = ¢,. However, the W.K.B. approximation involves the neglect of
terms involving derivatives of , etc. and it is precisely these terms which case i, to not satisfy
the boundary conditions. Including higher order terms in the W.K.B. approximations would
lead to a term proportional to cos 2¢ in ¢, and hence to the inclusion of ¥ in the solution
for yr. Here ¢, are given by (6.114) when u;— V vanishes within the flow domain; alternatively
a W.K.B. approximation may be used to show that

Ya & (po(ug—V) N)texp (idy), (6.144)

where by = _-tfz N(ug—V)1dz. (6.140)
~h

Except for a constant factor (6.114) and (6.144) agree near z = z,. By way of illustration, a
solution of (6.84) has been obtained numerically for the case when N is a constant, the Bous-
sinesq approximation is made, and , is the linear show flow U, zA~1, where U] is a constant.
In the absence of a shear flow, (6.13) is exact; a typical solution when %, is not zero is shown
in figure 3. (For the case shown, the solution when U, = 0 is larger due to the proximity of a
long wave resonance).
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(b) Transverse modulations

We now allow the amplitude to depend on Y as well as X. For simplicity of presentation, we
shall also assume that v, = 0, and so W = 0. Now put

7t = (=7 4P L1 1412 2 o= V) 44, (6.150)

_ o
TE =~ (= V) ¥ o A+ (1= V) 2, (6.150)
PY = —po N3y |A[? + py N2 (6.150)

substitute into (6.4), and eliminate the variables in favour of #. The result is

% [0 o 0% 02|42 X
axe [az (”0(”0 "z )] PolN? [axz ayz] =4S (6.164)
0 af
where My = po N2 — = (pow*?) { f2+ (6.165)
0z oz
0 0 u
and — - 1) = 2 — — -V =2 6.16¢
< (polia=V) d) = po N0 =2 {po<uo V) 2 w} (6.160)
The boundary conditions are
=0 on z=-h, (6.17a)
D+ pB(ug—V) {d+0uy/0z 0} = 0 on z =0, (6.170)
and &= -ylA]P+d on z=0. (6.17¢)
z
SN SN NN N AN N NN AN AN NN AN LN
—””‘ 0
,/' -02}
\
\\
el —04f
—06 e
\\\
\\
]
—0.8- //,/
I | | ~1 —"/1’ | [
;77777 7 7 77777 /77T 77T
- —30 —20 -10 0 10
¥lA|-*
Ficure 3. A plot of |4|~* against z for the case N = 1, and u, = U, z, with the Boussinesq approximation.
The depth £ = 1 and the wavenumber « = 3.5; ~-=-- , the case U; = 0, when ¢ = 0.21 and V = 0.095;

, the case U; = —0.1, when ¢ = 0.26 and V = 0.14. In both cases the eigenfunction f (6.1) has been
normalized so that max | f| = 1.
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Equation (6.16¢) determines # only to within an arbitrary function of X, Y; this arbitrary
function can be determined by putting

Q= f:. idz, (6.18)

and obtaining the following equation for @, by eliminating p, and 7} from (6.4q, b, d),

2Q  02Q 02 du
axe T are = gy (o= V) e °+6Y2f 5, dz

+a;l§42|2f_ {2 w*Kk (f2 (af)) (g )a"’fz (uo—V)%—f} dz. (6.19)

This is a Poisson equation for @ similar to an equation found by Davey & Stewartson (1974)
in their study of the transverse modulations of a water wave packet. By using equations (4.9a, b)
for the Stokes velocities, (6.16a) and (6.19) agree with the equations obtained by Grimshaw
(1977) for the transverse modulations of an internal gravity wave packet in the absence of a
shear flow.

To solve (6.154) we shall use a Fourier transform in X, Y. Thus, we suppose that

0, etc. oc exp (ILX+iMY), (6.20)
and then (6.164) becomes
j% {_aa; (po(uo— V) gi:) +p0N2u‘)}+M2p0N% — MM\ A]. (6.21)

Comparing the homogeneous equation (6.21) (i.e. the right hand side is replaced by zero)
with the eigenvalue equation (6.24) in the limit k — 0, and also comparing the corresponding
boundary conditions, we see that the free solutions for # will be long waves if (sec @) ¢o(¢) = V,
where ¢y(¢) is the phase speed of a long wave inclined at an angle ¢ to the shear flow u,(z),
and ¢ is the angle between the wave number (L, M) and the X-axis (note that ¢,(¢) is the
eigenvalue of the long wave eigenvalue problem obtained by replacing u, by u, cos ¢ in
(6.1) and then choosing k; = k, kK, = 0 and taking the limit x — 0). When this occurs the
inhomogeneous equation (6.21) cannot be solved for ®, and there is an oblique long wave
resonance between the wave packet and a long wave mode. Equations describing this reson-
ance have been developed by Grimshaw (1977) for the case #, = v, = 0; the corresponding
equations in the present case will be described elsewhere. Otherwise (6.21) has solutions
similar to those described for (6.8a), and there are again significantly large flows with a fine
microstructure whenever |uy— V| is small in the flow domain.
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